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SUMMARY :
\a Lal
A groove guide consists of two parallel conducting plates with two grooves cut
at the center in the longitudinal direction. The air filled deformed guide can be trans-
formed into a parallel-plane guide filled with a nonuniform aniostropic dielectric. The

posed boundary value problem was solved by approximation techniques; the results were
experimentally verified. The groove guide has the advantages of transporting most of

the energy in the groove region, having o very low attenuation constant and, under

certain conditions, propogating the dominant modes only.
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1. INTRODUCTION

A groove guide consists of two parallel conducting planes with two identical
grooves facing each other, cut at the center and parallel to the direction of propagation
as shown in Fig. 1. The impedance-matching concept, and the transverse resonance

_method were discussed by Rudy] » and Nakahara and KurauchiZ respectively. Their

discussions were restricted to rectangulor grooves, Tischer3 formulated a different
approach based on conformal mapping which is more general and thus is applicable to
guides with arbitrarily shaped grooves. Non-rectdngular grooves are often desirable
especially in the consideration of high power problems.

The purpose of this paper is to obtain a solution utilizing the last approach.
Approximate techniques will be used to obtain a solution of the wave equation and the
characteristics of the guide such as the cut-off frequency, guide wavelength, field
distribution, attenuation, and decoy constunt. Experimental results confirm the theoret-
ical solution quite well.

There are three salient features of groove guides which can be deduced from the _
approximate solution. -

(i) Energy transfer is concentrated in the region of the groove, for the field
decays exponentially in the transverse direction.

(ii) The attenuation constant of the groove guide due to the finite conductivity
of its walls decreases with frequency, and always less than that of the conventional
parallel-plane waveguide made of the same material. |

(iii) There are certain conditions for the geometry of grooves such that no hugher
order modes can propagate. L
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2. FORMULATION

Let the boundaries of an arbitrarily grooved air-filled waveguide be the coordinate
surfaces u = a and u = - a as shown in Fig. 1(a). The orthogonal curvilinear coordinates
v, v, and z in the W-space are numerically equal to the cartesian coordinates x, y, and
z in the Z-space respectively. The cross section of the parallel-plane guide in the
Z-space, as shown in Fig. 1(b), is the transform of the cross section of the groove guide
in the W=space. The infinitesimal line element in the orthogonal curvilinear coordinates

in the W-space is given as
(ds)2 = [h{u,v)dul 2'+ { h(u,v) dvl 2 + (dz)2

where h is the metrical coefficient. In the Z-space the element in Cartesian coordinates
is

@) = @x)? + @)+ (@d2)?
By comparing the scalar components of the Maxwell's equations in these two systems and
noting that the permeability and the pemittivity in the Z-space are tensors, itis found
that the two systems are equivalent if ’3' 4 |

h H [ TH h E] I3
Y x , v ] x - ,
hoH = , hoE | = |E j )
H H E E
e z.J e z.J L z..l Lz..l
F = l‘o -E and T = eo -g- .
0 0
‘where e= [0 1 0
' 2
0 0
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The matrix coefficient h, which is a function of x and y, is given by

2 2 2 2

=32 + () = @)+ () @

where p and g are carfesian coordinates in the W-space which are functions of v and v,

" and therefore functions of x and y. Actually Eq. (3) implies that the two coordinate

systems are interrelated by conformal transfomation, since if

R=p (,v) + faluv)

Z=x +jy

and R =f(Z) )

then I g% '2 is identically equal to h? as given by Eq. (3). The quantity h? can
then be found analytically or graphically by conformal mapping.

It can therefore be concluded that the air-filled groove guide con be transformed
by conformal mapping into a parallel-plane waveguide filled with a nonuniform anisotropic
material described by Eq. (2).

Let an electromagnetic wave propagate in the z-direction within the parallel-plane
guide in the Z-space. All field components have the same z-dependence of the form
exp (-ikzz) where kz is the propagation constant. By manipulating Maxwell's equations
for wave propagation inside such a guide the resulting wave equation will be

V2 i) + K2H Gy) yley) = 00 )



The quantity )\9 is the groove guide wavelength, and V_Lz is the tronsverse Laplacian
operator. The wave function y = Hz(x,y) for TE modes, and ¢ = Ez (x,y) for TM .

modes. It should be kept in mind that the z-dependence has been removed from the wave

function. Whenever suitable solutions of Eq. (5) are found for the pertinent boundary-
conditions, the transverse components can readily be found by using Maxwell's equations
which are reduced to the following form: '

T sk LV ¢ (umA) Y xBD] 6

H = (k/2) [(ee /) VJ_x €,z) - V, H ] (6b)

z

where Z is a unit vector in the z-direction. ,
The last step in this procedure is to transform the above solution from the Z-space
into the W-space, This can easily be done by using the identities in Eq. (V).



3. SOLUTION OF THE WAVE EQUATION

The exact solution of the wave equation for the case of the parallel-plane guide
loaded with nonuniform anisotropic dielectric is in general not known. Approximate
techniques will be used and experimental results verify the approximate solution.

Let the groove be confined to the central region and symmetrical with respect
to the z-axis, [see Fig. 1(a)]. There exists, therefore, a region, -a < x < aq,
outside of which h 221, The loaded parallel-plate guide can now be divided into
three sections, as shown in Fig. 2. Inregions| and lll, where x > o, ondh=zl, .
the guide is uniformly filled. In region Il, however, where -a< x < a, the guide is
filled with a hypothetical medium as described by Eq. (2). | ] |

Under these assumptions, the solutions to the guided waves will be hondled'.
s.eparutely according to their classifications, TE or TM modes.

a. TE Modes:

The wave function in the wave equation (5) represents H_ in the TE modes. The
boundary conditions are: ’

(i) At x =+a
1 "

V=¥ e gl gt o @

(ii) At x=-a

o
Ji_oa, %,x__ - g_x,_ | | @

(i) At y=0, b

where b is the width of the guide and y without superscript is valid for any of the three
régions. | ‘

Under the above conditions, let it be assumed that the even solution of the wave
equation for the TEmn mode is of the following form:

g
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n % “pg” o -
Vo = 2z Ay § P oo T - (o)
i
Vo = 2 Cpq o= Bx s G | )

where the subscript "e" stands for the even solutions, and the summations are taken over

all possible integers. The quantities qu and qu are constants yet to be determined.
The odd solutions will be considered later. '

If Eq. (10) is substituted in Eq. (5), and the value of h is taken as unity, then
for x 2> a the wave equation becomes:

> -(ﬂf-,'—) s & ] Am'f P cs TL = 0 2

P9

This equation is true for all values of x and y within the region under consideration
provided that

2 2 .2 '
o a = B -, - (3)

When boundary conditions (7) and (8) are applied to the assumed solutions (10) and (11),
and the temms of the same y~-dependence are set equal to zero, the result will be |

Ag® Pa = ch cos qua | (14)
-a a i . ‘
a A e = qu cpq sin ppq a (15)

lﬁ order to have nontrivial solutions of the expansion coefficients A and C, Eqs. (14)
and (15) yield the following conditions which must be satisfied:

apq = .qu tan quo B ‘ ' (16)

This is called the secular equatfon for the even TE modes.
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When a similar procedure is carried out for region Il by substituting Eq. (11) into
Eq. (5) it can be verified that

2 ,2 .2 '
%[kmh =15 ] Coq o8 Bx cos =0 (17)

where

2 2 2
L = B + (T

Multiplying Eq. (17) by ( { eq es/ 2b) ﬂsx cos -SEZ , ~and integrating over
the cross section of region Il yields

2 ) C. =0 - . (18a)

2062w -t?Fr s )cC
P,q ™0 PG  Pq P 9 Pq
‘ 1 ifq,s =0 )
where eq,es = {2 ifq,s A0
| ¢ ¢ b a (34 2, .
anq =(J q s/2¢:b)_j f cos B x oo_s-slh (x,y) cos quxcos qu- dx dy (18b)
o =o

Ve o° |
F = /20 f cos B x cosP_x dx
rspq o s Pq .

, .
Ssq = (ngcs/b)‘;f COSEEZ cossﬂ-[,Z dy

The set of nontrivial solutions of the expansion coefficients C requires the determinant
resulting from Eq. (18a) to vanish. Therefore ’
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det|! ¥H -L2F s | =0 (19

spq P9 TSPq sq

Each root of k2 in Eq. (19) corresponds to a speciﬂé TEmn mode,
The three equations (13), (16), and (19) provide a means of solving for the three

unknowns upq , and kmn' Unfortunately exact solutions are not readily accessible,

‘ ﬁpq
and it is imperative that approximate methods be utilized.

A first step in this solution is to limit the summations in Egs. (10) and (11) to a
finite number of terms such that the neglected higher order coefficients A and CPq
are negligible. This is true if | m-p ' and ln -q ‘ are much larger than unity and the
area of the cross-section of the groove is relatively small. This assumption makes Eq. (19)
a finite determinant. "

Let the zero-order approximation be investigated first. The characteristic value
(kzmn)(o) may be obtained by setting ppq = pn/ainEq. (19). This case is then similar
to the Rayleigh-Ritz method4' 5 for solution of the nonuniformly filled rectangular wave-~
guidé. The guide is constructed by adding two conducting walls at x = ¥ ato the non-
uniformly filled parallel-plane guide.

With the knowledge of (kzmn)(o), the zero-order valves of opq and qu can be found

from Eqs. (13) and (16). The zero-order values of a_ and qu are then substituted into

 Eq. (19), from which a first-order opproximation of k N is found. This procedure can be

repeated until fairly good approximate values for kzmn’ ap’q , and qu are obtained. The
convergence is assured here since kzmn is smallest for ppq = pw/a, and Egs. (13) and
(16) yield values too big for upq and ppq which in turn, when substituted in Eq. (19),

. 2 2 a -
yield o larger value of k o Larger values of k mn produce smaller GP‘I and qu.

Furthermore, qu is not sensitive to the change in upq' as long as upq is not small.

Similar to the form of the even solution, the odd solution is expressed by:

' -a
%‘ = g qu e qu cos SEZ (20)
*0“ - g Cpq sin ﬂmx cos %Z | : (21)
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- ;;A tupqx ‘ ‘ (22)

where the subscript "o" represents the odd solution. When similar procedures are
followed, Eqs.- (13) through (19) result, with the exception in Eq. (16) where tan
quo would be replaced by - cot B pq° and in Eqs. (18) and (19), the term cos ﬂpqx
would be replaced by sin ﬂpqx. The zero-order approximation is accomplished by
letting qu = w/2o 2p +1).

b. TM Modes:

The wave function in Eq. (5) represents Ez(x,y) for the case of TM modes. The
boundary conditions of Eqs. (7) and (8) are valid here. However, the third condition
should state that at y =0, B, the wave function y is identically zero. The even
solution of the equation is then assumed to be as follows:

I a x

*e"-l = %quf P! sin -q-E-Z ‘ (23).

and *e" = gcm cos ﬂmx sin SEZ ' (24) |

Following the same procedure and applying the boundary conditions, Eqs. (13)
through (19) result, with the exception of the function cosSEZ which must be replaced
by sin SEZ . The some argument applies to the odd solution of the wave equation.

N
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4. CLASSIFICATION OF WAVE MODES IN GROOVE GUIDES

While the TEM mode propagates in parallel-plate waveguides, it will propagate in
a groove guide, for the groove itself distorts the field pattern only slightly at the center
region. However, the wave will suffer high attenuation which increases with frequency.
There is no advantage, therefore, in using groove guides for the transmission line mode.
The interesting feature of this unconventional guide is the transmission of the TE and TM
modes,

Upon examination of Eq. (13), it can be seen that the values of apq may be real,
imaginary, or zero. Wave modes will therefore be classified accordingly into three
different classes.

() Propagating modes: Those modes have real values of upq which come from the fact

that kmn is less than (q v/b) for all values of q. These modes will propagate in the longi-
tudinal (z) direction and suffer exponential decay in the transverse direction.

The TEOI' TM" and TM]2 belong to this class because there is no contribution to
the mode functions Eqs. (10), (11), (23) and (24) from terms with q = 0. (Note that for
modes with odd n, no terms with even q contribute to the mode functions, and vice versa.)
Also D07 of TEgyr Dyyqy of TMyys and Doy
quantity anq is equal to Hrqu in Eq. (18) when ppq and ﬁrs are replaced by (p x/a) and
(r w/a) respectively. These ensure that k obtained from Eq. (19) is smaller than w/b for
TEy, and TMy;, and smaller than 2%/b for TM |

of TM12 are greater than |/2 where the

01 1 12,

(ii)) Nonpropagating modes: They are the mode for which apq in Eq. (13) is imaginary,

or kmn is larger than (qw/b) for some values of q. Imaginary vu]ues of a__ change the
nature of the mode function of Eq. (10) to represent propagation in‘the + x-direction. The
relative magnitudes of the coefficients qu remain unchanged for one mode. Therefore,

the finite energy of o mode with imaginary apq attenuates rapidly by radiation. Wave
modes belonging to this classification are TEm,2n where m,n= l,_2,3, +eo , because upO
is always imaginary.

(iii) Conditional propagation modes: If kmn is equal to (q%/b), the decay constant assumes
its critical value of zero. The critical values of kmn determined by Eq. (19), depend on




the distance between the two parallel plates, and on the size of the grooves. These
values of k are obtained from roots higher than those of the propagating modes. With

a =0, Eq. (16) gives qu = p%/a for even modes; similarly ppq = (2p + V)n/2a for
odd modes. The modes TEm_'_]' 2nt1 and TMm+2’ ne3 form,n=0,1,2 ... are
conditionally propagating modes for which the critical values of kmn are:

(kmn)c = '/b for TEm-I-I, 2n+‘ and TMm+2' 2‘“-1 modes . (250)
ke = 2/bforT™M , ,  modes : | (25b)

From another point of view, the critical value of kmn for TE mode is determined by

setting the next higher order mode cut-off frequencies of a grooved rectangular waveguide,
which is formed by placing two additional conducting plates ot x =+ a of the groove
guide, equal to the lowest cut-off frequency of a parallel-plane waveguide without a
groove. A similar procedure will detemine the conditions for transmission of TM modes.
Hence, for a given groove-guide, the transmission condition can be found. However, for’
given b and the shape of the groove, it is not in general, possible to determine the size
of the groove by Eq. (19) except by trial and error method. A rectangular groove guide

can be determined by the transverse resonance metl'\oc:l.2
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5. DECAY CONSTANT

The TEOI mode is the dominant mode, and will be discussed in more detail; it is
the only mode to be considered in the rest of this paper. Other modes con be analyzed
in a similar manner.

The decay constants apq given by Eq. (13) are independent of the 6peruting
frequency. The constants depend, however, on the size and shape of the groove, and
on the distance between the two plates of the guide.

For the TEm
by Eq. (13), and Agy is much larger than all other expansion coefficients. Therefore,

mode, upq is much smaller than all other decay constants as shown

at distances away from the center, Eq. (10) may be approximated as
I

- O .X
J"we 1

ML A
cos wy/b 2 Aot
The existence of real values of the decay constant for the groove guide allows
making the wall width finite and practical. In contrast, the parallel-plate guide has.
no decay constant in the transverse direction and consequ.ently radiation losses are quite

significant for walls of inite width.

rs
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6. ATTENUATION CONSTANT

The attenuation due to the finite conductivity of the waveguide walls can be
found by conventional methods. The attenuation constant is defined as the ratio of
the power dissipated in the walls to twice the power deﬁsity flow between the walls, J
assuming lossless dielectric filling the waveguide. The field distributions are given in
Eqs. (10) and (11). After some manipulation, the attenuation constant for the groove
guide can be shown as follows:

fc 4 fc 2 1/2 fc 2 -1/2
Att. = (Au.)P (+) [1-(-,2) e Li=(—) ) . G
. cp

where (Al't.)p = Attenuation constant of an air-filled parallel plane waveguide

fcp = Cut-off frequency of the parallel-plane waveguide.

fo = Cut-off frequency of the gm'ové guide,

f = Operating frequency
The G factor is a length expression, approximately equal to unity, and depends slightly
on frequency. To show the order of magnitude of G, it can be approximated by

2 2 .
cxl 4 k"3 For (2‘301" "'“21‘301") |
k:l 7]30].0‘ + sin 25010 |

for TEm mode, where all higher order terms are neglected.
The last term on the right hand side is, in general, much less than unity and
therefore may be neglected. ,
Since the decay constants are real for the propagating modes, fc is smaller than
fcp' The attenuation constant of the groove guide is, therefore, less than that of the
parallel-plane waveguide at all frequencies above cutoff. This is one of the salient
features of the groove guide.



7. EXPERIMENTAL RESULTS

To verify the preceding theory of the groove guide, a structure has been designed
as shown in Fig. 3. The rectangular groove depth is 0.1575 inch and its width is 0.3
inch. The guide width is 0.9 inch, the same as that of an X-band rectangular guide.
The 'expmssion of the scale factor h has been derived by Tischera,

(r2 - cos ¢ cos h 9)2 + (sin ¢sinh 9)2 | 1/2

(r] - cos ¢ cos he)2 (sin¢ sinh G)T

where ¢ =2wy/band 8 = 2ux/b. The scalar quantities ry and r, are determined

from Fig. 4 of Ref. 3, if the size of the groove is known. For the groove in this example
n = 1.0291 and fp= 1.2748. The quantities H rpq are calculated by a digital computer.
The integral of the region about the singularity y =0 and 8 = cos h ~ B is evaluated by
the open type integration method.6 The second-order approximation of kzm is calculated

by the method discussed in Sec. 3 and found to be

o1 b2 = 0.89 =2
The decay factor LR 0.456 neper/cm and it is independent of frequency.

A groove guide was constructed out of aluminum with length of one meter and
width of 15 cm. The ends of the guide were shorted by large plates of the same material,
thus forming a groove guide cavity. The energy was fed to the cavity through a small-
hole located on one of the end plates between the grooves. The electromagnetic wave
was launched by an X-band source set-up.

The groéve guide wavelength was measured by introducing a probe moving along
the open side of the groove guide cavity. The experimental values agree with the
theoretical calculation as shown in Fig. 4. The cut-off frequency is 6.15 GC compared
with 6.56 GC for parallel-plane waveguide of the same dimension.

The field distribution in the transverse direction was measured by Slater's pertur-
bation method.7 The shift of the resonant frequency of the cavity is proportional to the

-15- .
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square of field strengths:

Af i2 2

T = G IE v Ky ||

where fo is the resonant frequency, Af is the deviation in frequency due to perturbation,
and K, and K, are constants which depend on the geometry of the perturbing object. It
can be seen that the ratio of the mognitudes of the fields squared at two different positions

(x‘ and xz) as

E; = exp [20(x2-x‘)]

where a is the decay constant. Experimentally, a tiny metal sphere has been placed

at different locations in the transverse direction of the cavity and parallel to its wall.

The relative field strength squared wos measured and plotted as shown in Fig. 5 at two

different frequencies. The results agree with the theoretical curve which is calculated

for a = 0.456 neper/cm, and show that the decay constant is independent” of frequency.

"_There is, however, a discrepancy near the two edges of the guide, which is due to the

finite width of the conducting plates. The field near the edges is approximately 0.1 of
its peak value at the center of the groove for this waveguide.
The attenuation measurements were done by using cavity resonant methods. Barlow

and Cullen8 showed that for long cavities and neglecting the losses due to shorting plates

Att. = = -i:i
"o
where )‘g is the guide wavelength, and )‘o is the free-space wavelength. The large
difference between the experimental and the theoretical values of the attenvation
constant (see Fig. 6) is due to the reduction of the cavity quality factor Q by the
radiation from the open sides. This reduction amounts to about half the theoretical
value for the present experimental configuration. If the cavity walls were wider, the
discrepancy between the experimental and the theoretical values are expected to be
reduced accordingly. '



8. CONCLUSION

The boundary value problem of a groove guide has been solved by approximate
techniques. The cut-off frequency, field distribution, and the attenuation constant
were calculated. All the theoretical results were verified experimentally.

The outstanding features of the groove guide are the attenuation, transverse
decay constant, and mode propagation. The attenuation is small and decreases with
frequency. The transverse decay constant permits the parallel walls to be finite in
width, without significant radiation losses. Under certain geometrical conditions, the
propagation of TE modes is limited to the dominant mode only. These characteristics
make the groove guide a wide-band waveguide, and practicable for higher frequency
propagation. | '
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W-space

Z-space

®)

Fig. 1 - Conformal transformation of the groove guide.

(o) The groove guide in the W-space

(b) The equivalent parallel~plane guide in the Z-space
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Fig. 2 - Approximation of the equivalent parallel-plane waveguide.
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Fig. 3 =" Groove guide cross sectional view.
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Fig. 5 - The distribution of _fhe field strength squared as a function of
the transverse position in the groove guide.
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10

1

.

12

24~




